Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 33(2): e17202, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37947376

RESUMO

Insects are rich in various microorganisms, which play diverse roles in affecting host biology. Although most Drosophila species prefer rotten fruits, the agricultural pest Drosophila suzukii attacks ripening fruits before they are harvested. We have reported that the microbiota has positive and negative impacts on the agricultural pest D. suzukii on nutrient-poor and -rich diets, respectively. On nutrient-poor diets, microbes provide protein to facilitate larval development. But how they impede D. suzukii development on nutrient-rich diets is unknown. Here we report that Acetobacter pomorum (Apo), a commensal bacterium in many Drosophila species and rotting fruit, has several detrimental effects in D. suzukii. Feeding D. suzukii larvae nutrient-rich diets containing live Apo significantly delayed larval development and reduced the body weight of emerged adults. Apo induced larval immune responses and downregulated genes of digestion and juvenile hormone metabolism. Knockdown of these genes in germ-free larvae reproduced Apo-like weakened phenotypes. Apo was confirmed to secrete substantial amounts of gluconic acid. Adding gluconic acid to the D. suzukii larval diet hindered larval growth and decreased adult body weight. Moreover, the dose of gluconic acid that adversely affected D. suzukii did not negatively affect Drosophila melanogaster, suggesting that D. suzukii is less tolerant to acid than D. melanogaster. Taken together, these findings indicate that D. suzukii is negatively affected by gluconic acid, which may explain why it prefers ripening fruit over Apo-rich rotting fruit. These results show an insect's tolerance to microbes can influence its ecological niche.


Assuntos
Acetobacter , Gluconatos , Microbiota , Animais , Drosophila , Drosophila melanogaster/genética , Acetobacter/genética , Frutas , Larva/microbiologia , Peso Corporal
2.
World J Clin Cases ; 9(20): 5717-5723, 2021 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-34307630

RESUMO

BACKGROUND: Primary hepatic actinomycosis is a rare infection that can be clinically confused with hepatic pyogenic abscesses or neoproliferative processes. Only a few cases of primary hepatic actinomycosis in children have been reported in the English literature. CASE SUMMARY: We describe a pediatric patient with primary hepatic actinomycosis that involved the base of the right lung and anterior abdominal wall and skin. The patient was diagnosed via histological examination of spontaneously drained material. The patient was successfully treated with an exploratory laparotomy and right posterior segmentectomy of the liver, combined with antibiotic treatment. Following surgery, the patient remains in excellent condition, without evidence of recurrence at the time of drafting this report. To summarize the clinical manifestations, diagnosis, treatment, and outcomes of primary hepatic actinomycosis, 18 case reports in English were reviewed. CONCLUSION: We conclude that actinomycosis clinically features a chronic onset, nonspecific symptoms, and a primarily histologic diagnosis. Prolonged antibiotic treatment combined with invasive intervention provides a good prognosis.

3.
Food Res Int ; 137: 109439, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33233120

RESUMO

Sour soup is a traditional condiment in Guizhou Province, China. The purpose of this study was to investigate the differences in the fungi present in 5 types of sour soup (tomato sour soup, chili sour soup, cherry tomato sour soup, spoiled tomato sour soup, and red sour soup made from blended tomato and chili sour soup subjected to secondary fermentation) and to determine the reasons for the deterioration of tomato sour soup by comparing the fungal communities in normal and deterioratedtomato sour soup. A total of 5 phyla were detected in all 5 samples, including Ascomycota (69.38%), Basidiomycota (7.63%), Zygomycota (1.59%), Chytridiomycota (0.01%) and unclassified phyla (21.39%). Ascomycota was the main phylum in each sample except the red sour soup made from blended tomato and chili sour soup subjected to secondary fermentation. That sour soup contained many unrecognized phyla. At the genus level, there were major differences among the different samples. Dekkera spp. and Pichia spp. were the main dominant fungus in tomato sour soup, Saccharomyces spp. and Pichia spp. were the dominant fungus in chili sour soup, and Pichia spp. were the dominant fungus in cherry tomato sour soup. When sour soup went bad, the fungus of sour soup changed greatly, and the unknown fungal genera, Cladospora spp., Saccharomyces spp. and Emericella spp. became the dominant fungal genera. In addition, after the secondary fermentation of tomato and chili sour soup mixed with garlic and ginger, the fungal genera of the base fermentation were replaced by unknown fungal genera. Moreover, there were various spoilage fungi in sour soup, which indicated that there were safety risks in naturally fermented sour soup and should be further controlled. This study revealed the fungal flora in sour soup made from different vegetables and compared the fungal diversity of spoiled and normal tomato sour soup and thereby provided a basis for understanding the fungal diversity of sour soup in China and guiding the production of sour soup.


Assuntos
Ascomicetos , Micobioma , China , Fermentação , Sequenciamento de Nucleotídeos em Larga Escala
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...